Nonlinear Counterpropagating Waves, Multisymplectic Geometry, and the Instability of Standing Waves
نویسندگان
چکیده
Standing waves are a fundamental class of solutions of nonlinear wave equations with a spatial reflection symmetry, and they routinely arise in optical and oceanographic applications. At the linear level they are composed of two synchronized counterpropagating periodic traveling waves. At the nonlinear level, they can be defined abstractly by their symmetry properties. In this paper, general aspects of the modulational instability of standing waves are considered. This problem has difficulties that do not arise in the modulational instability of traveling waves. Here we propose a new geometric formulation for the linear stability problem, based on embedding the standing wave in a four-parameter family of nonlinear counterpropagating waves. Multisymplectic geometry is shown to encode the stability properties in an essential way. At the weakly nonlinear level we obtain the surprising result that standing waves are modulationally unstable only if the component traveling waves are modulation unstable. Systems of nonlinear wave equations will be used for illustration, but general aspects will be presented, applicable to a wide range of Hamiltonian PDEs, including water waves.
منابع مشابه
EFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملA Study of Bit Condition for Generation Rx -Mode Waves: Interaction of Particles with Z/UH-Mode Waves
Interactions of charge particles with electromagnetic waves have important effects (linear and nonlinear) on the propagation of electromagnetic waves, and it can somewhat play a role in generation of the new mode waves. Besides, the particle energies can play an important role in causing instability in plasma. The values of parallel energy of the particles have been calculated so that they can ...
متن کاملModulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons
Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...
متن کاملDispersion-related multimode instabilities and self-sustained oscillations in nonlinear counterpropagating waves.
We show that two linearly polarized counterpropagating waves in a Kerr nonlinear medium with linear dispersion can exhibit multimode temporal instability. We find the boundary of the unstable regime and demonstrate that the fully developed instability results in self-sustained oscillations and the onset of chaos.
متن کاملMultisymplectic geometry, covariant Hamiltonians, and water waves
This paper concerns the development and application of the multisymplectic Lagrangian and Hamiltonian formalism for nonlinear partial differential equations. This theory generalizes and unifies the classical Hamiltonian formalism of particle mechanics as well as the many pre-symplectic 2-forms used by Bridges. In this theory, solutions of a partial differential equation are sections of a fibre ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 64 شماره
صفحات -
تاریخ انتشار 2004